Surfactant effects on thermocapillary interactions of deformable drops.

نویسنده

  • Michael A Rother
چکیده

A three-dimensional boundary-integral algorithm is used to study thermocapillary interactions of two deformable drops in the presence of bulk-insoluble, non-ionic surfactant. The primary effect of deformation is to slow down the rate of film drainage between drops in close approach and prevent coalescence in the absence of van der Waals forces. Both linear and non-linear models are used to describe the relationship between interfacial tension and surfactant surface concentration. In the linear model, non-monotonic behavior of the minimum separation between the drops as a function of the surface Peclet number Pe(s) is observed for equal drop and external medium viscosities and thermal conductivities. For bubbles with zero drop-to-medium viscosity and thermal conductivity ratios, however, the minimum separation increases with Pe(s). There is a nearly linear relationship between the minimum drop separation and elasticity E. In the simplest non-linear equation of state, the product of the temperature and the surfactant concentration is retained by allowing non-zero values of the dimensionless gas constant Lambda. For Lambda=O(0.05), it is possible for the smaller drop to move faster than the larger drop. In the Langmuir adsorption framework, the tendency of the smaller drop to catch up to the larger one decreases as the ratio of the equilibrium to maximum surfactant surface concentration increases. Finally, in the Frumkin model, a minimum in the drop separation occurs as a function of the interaction parameter lambda(F) for trajectories with all other parameters held constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions.

The atomic force microscope (AFM) has provided unprecedented opportunities to study velocity-dependent interactions between deformable drops and bubbles under a range of solution conditions. The challenge is to design an experimental system that enables accurate force spectroscopy of the interaction between deformable drops and thus the extraction of accurate quantitative information about the ...

متن کامل

Thermocapillary motion of deformable drops and bubbles

In this paper we report on a numerical method to include Marangoni forces into a finitevolume solver for multi-phase flows. Our work is motivated by the question of whether thermal fluctuations typically found in combustion applications can impact the atomization of fuel drops due to variations in surface tension. To verify and validate our proposed method, we compare our results to theoretical...

متن کامل

On the thermocapillary motion of deformable droplets

In studies on Marangoni type motion of particles the surface tension is often approximated as a linear function of temperature. For deformable particles in a linear external temperature gradient far from the reference point this approximation yields a negative surface tension which is physically unrealistic. It is shown that H. Zhou and R. H. Davis (J. Colloid Interface Sci., 181, 60, (1996)) p...

متن کامل

Fe b 20 01 On the thermocapillary motion of deformable droplets

In studies on Marangoni type motion of particles the surface tension is often approximated as a linear function of temperature. For deformable particles in a linear external temperature gradient far from the reference point this approximation yields a negative surface tension which is physically unrealistic. It is shown that calculation where the leading deformable drop moved into a region of n...

متن کامل

Confined thermocapillary motion of a three-dimensional deformable drop

In this paper, simulations are performed of the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus. The refined level-set grid method is used to track the interface and resolve very small deformations. We compare our results to theoretically predicted thermocapillary migration velocities of drops and to experimentally measured migration velocities in micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 316 2  شماره 

صفحات  -

تاریخ انتشار 2007